

SATURN PROJECT:

a solid approach to MV transcatheter replacement

Paolo Denti MD San Raffaele Hospital Milan, Italy

Potential conflicts of interest

Paolo Denti is:

Consultant for Valtech Cardio, Abbott, 4tech Cardio and InnovHeart

- An **annular structure** is positioned behind the leaflets, in contact with the annulus.
- The valved central element is expanded inside the mitral orifice, to lock the native leaflets in between.

Because of the need of **appropriate anchorage** and **appropriate seal**

from a "two components system" to a "single piece / multifunctional parts"

MVM

Saturn Design – single piece / multifunctional parts

suitable for intracardiac reassembling of the prosthesis before final release

Safe to the Target: based on Guidewires

Implant procedure (including intra-cardiac reassembling) is led by GuideWires

connecting arms and annular segments are compatible with over-the-wire technics

Saturn Technology: TA - Implant Procedure

Three Steps Procedure

1) Placement of a pair of guidewires to embrace the native mitral valve

MVI

2) Over the wire introduction and positioning of the annular segments

3) Introduction of the central valve body, intracardiac reassembling and release

Saturn Technology: TA - Implant Procedure

мим

UniversityHospital Zurich

Saturn Technology: TA - Implant Procedure

pig heart

MVM

- Transapical procedure already validated in chronic animal models
- GLP in-vivo preclinical trial start Q1-2018

ventricular view of explanted pig heart

Saturn Technology: TS Implant Procedure

Trans-femoral trans-septal procedure under development

STEP 1 Placement of a pair of guidewires to embrace the native mitral valve

MVM

STEP 2 Over the wire introduction and positioning of the annular segments

PATIENTS SCREENINIG: TWO MAJOR LIMITING FACTORS

Native Annulus Size

MVM

Risk of LVOT Obstruction (direct and SAM)

An Effective Solution to address Native Annulus Size Challenge

• Inverse Remodeling of the Mitral Annulus Size reduction – Annuloplasty-like

Additional benefits from small size prostheses

✓ BETTER CRIMPABILITY

lower profile delivery systems

✓ LONGER DURABILITY

less stress on the prosthesis (applied force increases with the square of the diameter)

MVM

An Effective Solution to address Native Annulus Size Challenge

- Inverse Remodeling of the Mitral Annulus Size reduction – Annuloplasty-like
- Stabilization of the Mitral Annulus Surgical-like anchoring to the annulus

An Effective Solution to address Risk of LVOT Obstruction

• Low Profile Prosthesis Reduced risk of LVOT

MVM

An Effective Solution to address Risk of LVOT Obstruction

• Low Profile Prosthesis Reduced risk of LVOTO

MVM

• Anterior Leaflet gripped by Connecting Arm Reduced risk of SAM

UniversityHospital Zurich

Saturn Technology: Think Mitral!

- Simple and accurate implant, based on daily used cathlab GuideWires
- Surgical-like anchoring to the mitral annulus, structure stabilization
- Annular size reduction, immediate remodeling
- Low profile prosthesis, low LVOT Obstruction risk
- No SAM risk

MVM

